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Important species may be in critically central network positions in ecological interaction networks. Beyond quantifying which one
is the most central species in a food web, a multinode approach can identify the key sets of the most central n species as well.
However, for sets of different size n, these structural keystone species complexes may differ in their composition. If larger sets
contain smaller sets, higher nestedness may be a proxy for predictive ecology and efficient management of ecosystems. On the
contrary, lower nestedness makes the identification of keystones more complicated. Our question here is how the topology of a
network can influence nestedness as an architectural constraint. Here, we study the role of keystone species complexes in 27 real
food webs and quantify their nestedness. After quantifying their topology properties, we determine their keystone species
complexes, calculate their nestedness, and statistically analyze the relationship between topological indices and nestedness. A
better understanding of the cores of ecosystems is crucial for efficient conservation efforts, and to know which networks will
have more nested keystone species complexes would be a great help for prioritizing species that could preserve the ecosystem’s

structural integrity.

1. Introduction

Understanding and predicting the robustness and vulnerabil-
ity of complex ecological networks is a topic of increasing
relevance. There is a general agreement that nodes in certain
critical network positions may have disproportionately large
effects on network functioning. The loss of these key nodes
may easily generate cascading effects in the network, so their
management is important. These cascading interactions are
hard to predict, since secondary effects depend on the partic-
ular architecture of the network. Thus, the question of how
network topology influences the systemic importance of
critical nodes emerges. Focusing research on these key nodes
can be one way on how to tame and handle complexity [1]
and assess the relative importance of species in ecological
communities [2-4].

Various network centrality measures can quantify and
identify important network positions [5;76], and structural
analyses [7-9] are increasingly supported by dynamical

studies [10, 11]. The latter suggest that key positions may
not be identified only by local indices (e.g., node degree).
Instead, network measures considering the indirect neigh-
bourhood (e.g., betweenness centrality) of nodes are needed.
A number of experimental [12] and modelling [13] works
support the importance of indirect effects in biological
systems. There is growing interest in nonlocal, mesoscale
network indices [5].

Apart from expanding the neighbourhood of focal nodes
(increasing the distance for network effects), it has also been
suggested that the number of local nodes may also be
expanded from 1 to n. The centrality of node sets has been
discussed [14, 15] and applied in other fields of science
(e.g., landscape ecology [16, 17]). This approach suggests that
the positional importance of network nodes may not be
characterized independently, one by one, but rather simulta-
neously. Support for the relevance of multispecies vulnerabil-
ity analyses comes from both empirical (e.g., keystone species
complexes [18]) and modelling (multispecies fisheries [19])
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directions. Recent attempts have been made to model and
determine the identity of keystone species complexes in real
ecosystems by network analysis [20-22].

Although the predominant view on network robustness
is focused on local and single-node analyses (i.e., degree dis-
tribution [8, 23, 24]), here, we take a nonlocal, multinode
approach to the problem. In this paper, (1) we quantify the
macroscopic (network-level) topological properties of 27 real
food webs, (2) we calculate the centrality of their node sets,
(3) we quantify the nestedness of the highest centrality sets,
and (3) we study the correlation between nestedness and
topological network properties. We argue that large nested-
ness makes the network more predictable and manageable
[25], so our results may have implications to the efficiency
of conservation efforts.

2. Materials and Methods

2.1. Food Webs. We used 27 food webs freely available
from the NCEAS database (http://www.nceas.ucsb.edu/
interactionweb). These describe various, mostly terrestrial
ecosystems. For the complete species lists and more biologi-
cal information, see the original source. Before the analyses,
we deleted isolated nodes and small components from the
networks and focused only on the giant component (this
typically means the deletion of only 0-5% of the original
nodes). Furthermore, nodes were recoded, so numbering
starts with zero.

The food webs are coded as follows: aka a (Akatore A,
pine forest, Otago, New Zealand), aka b (Akatore B, pine
forest, Otago, New Zealand), ber (Berwick, pine forest,
Otago, New Zealand), black (Blackrock, pasture grassland,
Otago, New Zealand), broad (Broad, pasture grassland,
Otago, New Zealand), cant (Canton, pasture grassland,
Otago, New Zealand), carpinteria (Carpinteria salt marsh,
California, USA), cat (Catlins, pine forest, Otago, New
Zealand), cowl (Coweetal, pine forest, North Carolina,
USA), cowl7 (Coweetal7, pine forest, North Carolina,
USA), demp au (Dempsters tussock grassland in autumn,
Otago, New Zealand), demp sp (Dempsters tussock grassland
in spring, Otago, New Zealand), demp su (Dempsters tus-
sock grassland in summer, Otago, New Zealand), german
(German, tussock grassland, Otago, New Zealand), healy
(Healy tussock grassland, Otago, New Zealand), kyeb
(Kyeburn, tussock grassland, Otago, New Zealand), lilkye
(LilKyeburn, tussock grassland, Otago, New Zealand),
martins (Martins, pine forest, Maine, USA), narr (Narrow-
dale, pine forest, Otago, New Zealand), north (NorthCol,
broadleaf forest, Otago, New Zealand), powder (Powder,
broadleaf forest, Otago, New Zealand), stony (Stony,
tussock grassland, Otago, New Zealand), sutton au (Sutton
tussock grassland in autumn, Otago, New Zealand), sutton
sp (Sutton tussock grassland in spring, Otago, New
Zealand), sutton su (Sutton tussock grassland in summer,
Otago, New Zealand), troy (Troy, pine forest, Maine,
USA), and ven (Venlaw, pine forest, Otago, New Zealand).
Geographic distributionris thus'quite narrow, but this does
not seem to have any known effect on the results.

Complexity

2.2. Network Analysis. We calculated nine global (macro-
scopic) topological properties for each network. The number
of nodes (N) and the number of interactions (L) are trivial
properties of every network. Their combination provides
the connectance (C) (or density) of the network:

2% L
= Nw-1 M)

where undirected interactions are considered with no self-
loop. Based on individual node degree values, we can
compute a macroscopic network measure, the average degree
(avD), calculated for all nodes in the network.

The clustering coefficient (CC;) of node i equals the
density of the subnetwork composed of the neighbours of
node i. This is the probability that its two neighbours j and
k will be directly linked to each other. It can be defined as

cc - 27 IEG) o

D (D;-1)
where G; is the subgraph composed of the nodes that
are directly linked to node i, |E(G,)| is the number of
edges in this subgraph, and D; is the degree of node i.
The whole network can be characterized by the average
clustering oefficient calculated for all nodes (avCC),
and this can be also weighted by the degree value of
particular nodes (weighted clustering coefficient: wCC).
The latter gives larger emphasis on clusters around more
connected nodes.

The distance between two nodes i and j in a network (d;;)

is the minimal number of links connecting them (i.e., the
length of the shortest path length between i and j). The whole
network can be characterized by the average of shortest path
lengths (avSPL) and their maximum value (diameter, d).
When a network is composed of more than one component,
some distance values will be infinite (for nodes m and n
belonging to different components). This makes it impossible
to calculate distance-based network metrics. In these cases,
the reciprocal distance between nodes i and j can be given as

, 1
dij = dT] (3)

and this measure can be used also when a network consists of
more than one component (since the reciprocal of infinity
equals, by definition, zero). The distance-weighted fragmen-
tation (DF) of the network can be calculated as

Noxd.
_ j
DF_1—Z—1,*], , (4)
i,j

which is the average reciprocal distance for each pair of nodes
in the network.

We selected these macroscopic network properties
because they are simple, yet, they reflect several local
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(degree-related), mesoscale (clustering-related) and global
(distance-related) properties of the networks.

2.3. Multinode Centrality. Apart from computing the central-
ity of individual graph nodes, one can define and quantify
also the centrality of sets of nodes (see Figure 1). Multinode
centrality analyses have already been performed for different
types of ecological networks including food webs [26] and
habitat networks [27].

The most central multinode sets of # = 1 to 4 nodes were
identified for the 27 food webs, according to two different
aspects of key player selection. First, how to best fragment
(disrupt) the network by removing n key nodes (the
“negative” version of the key player problem; KPP-Neg)
and second, how to best send a message out from # nodes
of the network to others (the “positive” version; KPP-Pos,
see [15]). For KPP-Neg, we determined the most central
node sets considering binary (F) and distance-weighted
(FR) fragmentation centrality. For KPP-Pos, we determined
the most central node sets considering binary m-reach
centrality (Mm) and distance-weighted (DR) reachability
with m=1, 2 and 3 steps (M1, M2, and M3, respectively).
Each of the four multinode centrality measures were
computed for n =1 to 4 nodes (n =1 is clearly single-node).
Multinode key sets were calculated using Pyntacle, our
high-performance network analysis tool.

2.4. Nestedness. The nestedness of presence-absence ecologi-
cal data [28] has a rich literature with well-developed
methods ([29, 30]; for software, see [31]). The nestedness
approach has also been extended to ecological interactions
in binary networks [32, 33]. Here, we study the nestedness
of ecological interaction networks in a very different way
(see [15, 20, 25]), quantifying the set-subset relationships of
central nodes in a network.

We calculated the nestedness of central node sets (i.e., the
overlap among the sets of size n=1 to 4) using the Nrow
metric [34]. Nrow is the average percentage of nodes from
smaller sets that are contained in larger sets, taking all possi-
ble pairs of sets. For example, for the food web demp au, the
M2 key player sets for n=1 to 4 nodes were {0} for n=1,
{0 2} for n=2, {0 68 76} for n=3, and {76 18 37 66} for
n=4. For n=1 and n =2, there is perfect overlap. For n=1
and n =3, there is partial overlap, since the smaller set
(n=1) is a subset of the larger one (n=3). For n=2 and
n=4, there is no overlap, since the two sets have no
common elements. Averaging all the 6 overlaps, we have
Nrow=47.22, which is the nestedness value for M2 in
the demp au food web (see the species identities for this
food web in Discussion). The same was done for the
remaining centralities (F, FR, M2, M3, and DR) and for
all food webs.

2.5. Statistical Analysis. We compared the 9 topological prop-
erties of the 27 food webs with their 6 nestedness metrics by
Spearman correlation, because most topological properties
were not normally distributed. We considered only correla-
tions'of 0:60"and above (aswelllas=0:60"and below). Corre-
lations were calculated in R 3.3.0 [35].

F1GURE 1: Toy network illustrating the nonnested centrality of node
sets. The number of nodes reachable from nodes a, b, ¢, and d in two
steps (m =2) equals 11, 9, 9, and 7, respectively. Thus, node a has
the highest m-reach centrality in the network. Yet, from the (a, d)
set of nodes only 12 and from the (a, b) or (g, ¢) set of nodes only
13, while from the (b, ¢) set of nodes, 14 other nodes are reachable
in two steps. Thus, the (b,c) set is more central than the other
sets, based on reachability. The highest centrality node (a) is not a
subset of the highest centrality set of two nodes (b, c).

3. Results

3.1. Network Metrics. The studied macroscopic network
parameters are presented in Table 1. The smallest and the
largest networks, in terms of the number of nodes, were the
cat (N =48) and the carpinteria food webs (N = 128), respec-
tively. Depending on the various actual numbers of links (L),
connectance ranged from C=0.06 (aka a, cowl7, martins,
narr, and troy) to C = 0.16 (demp su). Average degree ranged
from avD =4 (aka b, cowl17, and narr) to avD = 18.72 (carpin-
teria). Diameter ranged from d =4 (black, cowl7, german,
healy, and stony) to d =7 (cowl), and the average shortest
path length ranged from avSPL=2.19 (carpinteria) to
avSPL=2.9 (cowI). The average clustering coefficient ranged
from avCC=0.02 (cat, kyeb, sutton sp, and sutton su) to
avCC=0.25 (carpinteria), and the weighted clustering coefhi-
cient ranged from wCC =0 (broad, sutton sp, and sutton su)
to wCC =0.25 (carpinteria). Finally, distance-based fragmen-
tation ranged from DF=0.48 (carpinteria and demp su) to
DE=0.6 (troy).

3.2. Nestedness. Our question was if topology has any signif-
icant effect on the nestedness of keystone species complexes
in the studied 27 food webs. Between 9 topological properties
and 6 nestedness metrics for each food web, we analysed 54
correlations. Only 4 of them were significant (shown in
Figure 2), and in each of these M2 was the nestedness index
(F, FR, DR, M1, and M3 did not show any significant corre-
lation). M2 correlated positively with DF and avSPL and

www.manaraa.com



Complexity

TaBLE 1: Topological properties and nestedness of multinode centrality sets for 27 food webs. The topological properties include the number
of nodes (N), the number of edges (L), diameter (d), average degree (avD), average shortest path length (avSPL), connectance (C), average
clustering coefficient (avCC), weighted clustering coefficient (wCC), and distance-based fragmentation (DF). Nestedness is always
calculated for sets of n=1 to 4 nodes, based on fragmentation (F), distance-based fragmentation (FR), weighted reachability (DR), and

binary m-reach for m=1 (M1), 2 (M2), and 3 (M3) steps.

Web N L d avD avSPL C avCC wCC DF F DR FR M1 M2 M3
aka a 84 221 5 5.26 2.72 0.06 0.04 0.01 0.58 100 100 80.56 100 77.78 0
aka b 54 108 5 4 2.6 0.07 0.1 0.03  0.56 100 100 94.44 91.67 77.78 0
ber 77 232 5 6.03 2.63 0.08 0.03 0.01 0.57 94.44 100 100 86.11  38.89 5.56
black 85 366 4 8.61 2.45 0.1 0.04 0.03 053 100 9444  77.78 100 41.67 5.56
broad 94 559 6 11.89 2.47 0.13 0.03 0 0.52 100 100 9444  61.11 5.56 0
cant 108 693 5 1283 2.37 0.12 0.04 0.01 0.52 100 100 100 100 8.33 16.67
carpinteria 128 1198 5 18.72 2.19 0.15 0.25 025 048 100 36.11 86.11 30.56 7222  16.67
cat 48 107 5 4.46 242 0.09 0.02 0.01 0.53 100 86.11 100 77.78  33.33 0
cowl 58 118 7 4.07 2.9 0.07 0.11 0.06  0.59 100 91.67 100 100 50 0
cowl?7 71 142 4 4 2.73 0.06 0.15 0.04  0.59 100 100 55.56 100 72.22 0
demp au 83 410 6 9.88 2.47 0.12 0.03 0.01 0.53 50 100 27.78 100 47.22 0
demp sp 93 535 5 1151 2.47 0.12 0.04 0.01 0.53 100 69.44 7222  63.89 8.33 0
demp su 107 918 5 17.16 221 0.16 0.09 0.06 048 100 100 100 94.44 5.56 16.67
german 84 347 4 8.26 2.58 0.1 0.07 0.05 055 100 100 100 9444  27.78 0
healy 95 603 4 12.69 2.3 0.13 0.07 0.03 0.5 91.67 100 100 9444  16.67 0
kyeb 98 616 5 1257 2.4 0.13 0.02 0.02  0.52 100 4722 8333  66.67 2222 0
lilkye 78 372 5 9.54 2.49 0.12 0.07 0.02 053 91.67 100 94.44 100 41.67 8.33
martins 104 311 5 5.98 2.65 0.06 0.11 0.04  0.58 100 91.67 66.67 91.67 72.22 5.56
narr 71 142 5 4 2.55 0.06 0.07 0.02 057 100 100 94.44 100 77.78 0
north 78 228 5 5.85 2.54 0.07 0.12 0.04 055 100 100 100 100 5.56 8.33
powder 78 252 6 6.46 2.58 0.08 0.06 0.01 0.56 100 61.11 91.67 77.78  38.89 0
stony 112 824 4 1471 2.35 0.13 0.07 0.02 051 100 100 86.11 100 16.67 8.33
sutton au 80 331 6 8.28 2.59 0.1 0.03 0.01 0.55 100 100 100 94.44 25 0
sutton sp 74 388 5 1049 2.39 0.14 0.02 0 0.51 100 100 100 100 0 8.33
sutton su 86 417 5 9.7 2.34 0.11 0.02 0 0.51 100 5833 9444 66.67 16.67 0
troy 76 170 6 4.47 2.87 0.06 0.05 0.03 0.6 100 100 91.67 9444 77.78 11.11
ven 65 184 5 5.66 2.57 0.09 0.06 0.03 056 94.44 100 100 100 41.67 0

negatively with C and avD (N, L, d, avCC, and wCC did not
show any significant correlation).

The four significant correlations are between M2
and DF (rho=0.681; p=0.0009), M2 and C (rtho=-0.678;
p=0.001), M2 and avD (rho=-0.637; p=0.00035), and
M2 and avSPL (rho=0.605; p =0.00084). All of them are
strongly significant.

Only a few topological features can be used as a proxy for
assessing the nestedness of central node sets, but most of
these show quite strong correlations. Our results suggest that
in networks where shortest paths are shorter and density is
higher, nestedness is lower, so systems-based conservation
can be less predictive and efficient. One example is the Sutton
tussock grassland in springtime (Figure 3(a), Supplementary
Material (available here)). Here, the single most central
organism in the network is unidentifiable detritus (#0, black
in Figure 3(a)). The most central pair is the diatom Cocconeis
sp. and the larvae of the riffle beetle Hydora nitida (#10 and
#61; blue): The group of the threemosticentral network posi-
tions is the red alga Audouinella sp., the diatom Navicula

avenacea, and the caddisfly Pycnocentrodes spp. (#9, #30,
and #70, red). The four most central organisms are the alga
Epithemia zebra, the diatom Eunotia spp., the fishfly Archi-
cauliodes diversus, and Chironomid type “Diamesid blond”
(#18, #19, #49, and #52, orange). Hence, the increasing core
of key organisms is perfectly unnested (M2=0, up to 4
groups). Accordingly, DF is low (0.51), C is high (0.14),
avD is high (10.49), and avSPL is small (2.39). Apart from
the single-node core (n=1), the larger cores (n>1) are
always composed of both plants (e.g., diatoms) and animals
(e.g., caddisfly).

On the contrary, in less connected and less compact
networks, nestedness is higher, so a multispecies view fairly
reinforce the results of single-species analyses. One example
is the Dempsters tussock grassland in autumn (Figure 3(b),
Supplementary Material). Here, the single most central
organism in the network is unidentifiable detritus (#0, black).
The most central pair is wunidentifiable detritus and
terrestrial invertebrates (#2, blue). The group of the three
most central network positions is unidentifiable detritus,
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FIGURE 2: Significant correlations between topological properties and reachability. DF (a; rho=0.681; p=0.0009), C (b; rho=-0.678;
p=0.001), avD (c; rho=-0.637; p=0.00035), and avSPL (d; rho = 0.605; p = 0.00084) versus M2. All of them are strongly significant.

and the caddisflies Olinga feredayi, and Tiphobiosis sp.
(#68 in orange and #76 in red). The four most central
organisms are Tiphobiosis sp., alga Epithemia zebra (#18,
yellow), another alga Spirogyra sp. (#37, yellow), and a mayfly
Nesameletus ornatus (#66 yellow). Here, the composition of
the core is a little bit more nested (M2 =47.22) and, accord-
ingly, DF is somewhat higher (0.53), C is lower (0.12), avD
is a little lower (9.88), and avSPL is longer (2.47).
Supplementary Material show the nestedness patterns for
each food web. The numbers are the codes for species, and
these are generally not comparable for different networks.
However, node #0 is almost always unidentifiable detritus
(or some similarly large aggregated group, e.g., terrestrial
invertebrate remains). In many networks, this is part of the
key player complexes. Biologically speaking, this is an arte-
fact: the detritus is clearly a well-connected component of
food webs. Only other species in the key player complexes
can be biologically interpreted. It is also noted that Unidenti-
fiable detritus, even if it is frequently the key group for n=1,
is frequently missing from larger key player sets (e.g., for
n=4 in the demp au food web). So, even if it dominates
the network structure in itself, its position is not significant
anymore if we think in terms of a larger network core.
Apart from the large aggregated groups typically being in
the centre of the network, the four organisms that can be
in the key position also in single-species cores (n=1) are
F : the broad food

carpinteria food web), the mayfly Deleatidium spp. (#34
in the north food web), and the diatom Rhoicosphenia cur-
vata (#16 in the powder food web). Hemigrapsus appears
in all of the four studied key player sets in the carpinteria
food web (n=1, 2, 3, 4).

Some communities are described by several versions of
the food web (e.g., seasonal versions like demp au, demp sp,
and demp su). In some cases, these versions differ a lot in
nestedness (demp and sutton), while in other cases, there is
only a small difference between the versions (aka and cow).

4. Discussion

The dynamical behaviour of complex ecological systems can
be dominated by a few critically important components.
Finding these could dramatically increase our understanding,
the predictability of models, and the efficiency of manage-
ment efforts. We studied a comparable set of empirical food
webs and identified the structurally most important n nodes
in them. Whether these small sets were nested was correlated
to some topological properties of these networks.

Network features influencing nestedness can be regarded
as topological constraints on the predictability and efficiency
of management and systems-based conservation. It remains
unclear to us how M2 and M3 can be negatively and posi-
tively correlated with avD, respectively.

We need to much better understand the biology of
the key groups and the ecology of nested vs. nonnested
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F1GURE 3: The food webs of the Sutton tussock grassland in spring (a; sutton sp) and the Dempster tussock grassland in autumn (b; demp au).

www.manaraa.com



Complexity

communities. If certain groups (e.g., zooplankton and dia-
toms) appear frequently in the core of food webs, these can
be thought to be real keystone species. This is especially
important if the core is nested: this means that the particular
community is really dominated by a single species. We still
know nothing about the kinds of communities (or the set of
abiotic factors) that can be associated with nested patterns.
Biologically speaking, this is the most promising future
research line.

All of our results are based on a set of 27 empirical food
webs in the size range between 48 and 128 trophic groups.
This is the typical size scale for food webs in the literature.
All the webs were described by the same methodological
standards, so they are comparable to each other. In order to
see if these results are generalizable, research is needed in at
least two directions.

First, one wants to see if topological properties scale with
network size. For this, much larger networks should be
studied—and the topological properties studied here can be
more and more relevant and interesting for larger graphs.
The limitation here is that empirical networks are not larger.
Much larger networks (N >500) could be constructed by
dramatically increasing the resolution of trophic groups
(e.g., by adding bacteria and replacing trophic groups by bio-
logical species), but these networks would not be biologically
comparable to the present ones (even if being mathematically
more interesting).

Second, the toy network of the same size range can be
generated by various algorithms (already in progress), and
empirical topologies could be compared to the theoretical
distributions. This kind of randomization analysis is fairly
straightforward in community ecology; however, it is not
easy to see which generative algorithms give the most realistic
results (e.g., [36] but see [37]). These studies could reveal
if the reported relationships are universal properties of
networks in general, or they are specific to only food webs
for some biological (ecological) reasons (Capocefalo et al.
unpublished). If the results are food web-specific, we need
to understand the biological reasons. If the results will be
shown to be of general nature, conclusions can be drawn
also in other fields of research. For example, terrorist net-
works have been shown to have large average shortest paths
and low density [38], properties suggesting that their efficient
“management” is possible—in a security and defence sense.

This paper is of mostly conceptual and methodological
nature. We suggest that the search for the cores of ecosystem
networks opens several research lines that could massively
contribute to systems-based conservation biology and man-
agement, with applications ranging from marine fisheries to
pollination systems.
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